
Journal of  Engineering Mathematics 26: 21-37, 1992. 
H.K. Kuiken and S.W. Rienstra (eds), Problems in Applied, Industrial and Engineering Mathematics. 
© 1992 Kluwer Academic Publishers. Printed in the Netherlands. 21 

Marangoni convection in V-shaped containers 
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Abstract. This paper presents a numerical study of the time evolution of Marangoni convection in two V-shaped 
containers involved in the microgravity experiments reported in Hoefsloot et al. [7]. First the case of the triangular 
container with a plane gas/liquid interface is considered, next the container having the shape of a circular sector 
with a curved interface is dealt with. The numerical results show the same behaviour as observed experimentally: 
convection caused by macroscale effects in the former, and microconvection in the latter case. 

I. Introduction 

Marangoni convection, or surface tension driven convective flow, may occur when a solute 
evaporates  from a liquid at a gas/liquid interface and the liquid's surface tension depends on 
the solute concentration. Perturbations of the mass transfer across the interface create local 
differences in surface tension, and the liquid at the interface will flow from locations with low 
surface tension towards locations with high surface tension. If this mechanism is sufficiently 
strong to overcome the counteracting viscous resistance, a convective flow is created in the 
liquid. In many cases a characteristic roll-cell pattern is seen to develop. Very often a second 
mechanism that can give rise to convective flow is present: buoyancy effects as a result of 
density variations (Rayleigh instability). In practice it is sometimes difficult to determine 
whether  an observed convective flow is the result of Marangoni or Rayleigh instability, or of 
a combination of the two effects. We mention that both types of instability can also occur in 
the case of heat transfer across a gas/liquid interface, viz, when surface tension and /o r  
density are temperature-dependent .  

In chemical process industry Marangoni convection is considered to be an important 
phenomenon  in mass transfer equipment,  like packed-bed columns, where thin liquid films 
are in contact with a gas phase. It has been shown (see e.g. Nield [13]) that Marangoni 
instability determines the convective flows in thin liquid films, whereas Rayleigh instability is 
dominant  in thick layers. Since the presence of roll-cell activity in a chemical reactor 
enhances mass transfer, thus leading to an improved performance,  the study of the 
Marangoni effect is of practical importance. 

Experimental  work on Marangoni convection in thin liquid layers is somewhat prob- 
lematic, because flow measurements in such layers are very difficult and in thick layers the 
simultaneous presence of Rayleigh convection is an obstacle. Therefore  experiments are 
usually carried out in a microgravity environment,  so that buoyancy effects are negligible and 
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the restriction to thin liquid layers is removed. A number of years ago the Chemical 
Engineering Department of the University of Groningen (The Netherlands) started a 
program of microgravity experiments to study Marangoni convection. In all experiments the 
driving force for the convective flows was the evaporation of acetone into air from an 
acetone in water solution. For this liquid the surface tension is a decreasing function of the 
solute concentration. This function is usually taken to be a linear one for the range of 
concentration values under consideration. Marangoni convection near a plane gas/liquid 
interface was studied during the D1-Spacelab flight of 1985 (Lichtenbelt et al. [11], Dijkstra 
and Lichtenbelt [2]). Experiments concerning surface tension driven flow around a ventilated 
air bubble in the acetone in water solution, carried out during two sounding-rocket flights 
(1987, 1988) in Kiruna (Sweden) and during two parabolic-flight campaigns (1986, 1988) in 
Houston (USA), were meant to investigate the influence of interface curvature (Dijkstra and 
Lichtenbelt [2], Lichtenbelt [10], Hoefsloot and Janssen [3, 4], Hoefsloot et al. [9]). The 
latest experiments were performed in 1990 with narrow V-shaped containers on board of the 
Caravelle 234 airplane at the Centre d'Essais en Vols in Bretigny (France), see Hoefsloot et 
al. [7]. 

The experiments showed that it makes sense to distinguish between two types of 
Marangoni convection: convection created by overall surface tension gradients occurring 
initially in the system (macroscale convection or, shortly, macroconvection) and convection 
which is the result of hydrodynamic instability (microscale convection or microconvection). 
We emphasize that this difference concerns only the mechanism governing the onset of the 
convective flow, and not necessarily the final flow development towards a more or less 
regular roll-cell pattern. Macroscale effects are mostly due to geometrical factors which lead 
to inhomogeneous mass transfer across the interface, whereas microconvection occurs when 
evaporation is uniform. A linear stability analysis describing theoretically the initial stage of 
microscale convection has been presented by Hoefsloot et al. for a cylindrically curved 
interface [5] and for the spherical interface separating a ventilated air bubble from the 
surrounding liquid [6, 8]. For the latter system numerical results describing the longer-time 
evolution of Marangoni convection are reported in Hoefsloot et al. [9]. 

In this paper we present a numerical study of the time evolution of Marangoni convection 
in two of the V-shaped containers involved in the experiments described in [7]. The flows in 
this type of container are believed to be representative for those occurring in dead zones 
(stagnant liquid zones) in packings in mass transfer equipment. Two different containers will 
be considered: a triangular one with a plane gas/liquid interface, in which convective flow 
due to macroscale effects is to be expected, and another having the shape of a circular sector 
with a curved interface, which will show microscale convection. In Section 2 the experimen- 
tal setup and results concerning these two containers are briefly outlined. The mathematical 
formulation of the two-dimensional coupled fluid-flow/mass-diffusion problem is given in 
Section 3, together with a discussion of the numerical solution technique. In Section 4 the 
numerical results are presented, and the paper ends with Section 5 in which some concluding 
remarks are made. 

2. Results of microgravity experiments 

The experimental setup as well as the experimental results are fully described in Hoefsloot et 
al. [7]. For completeness a brief summary will be given here. The experiments were 
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performed during a number of parabolic flights, in each of which a microgravity level of less 

than 0.05g was attained for a period of about 17 seconds. The main parts of the setup were 

narrow V-shaped glass containers, filled with a 5 wt% acetone solution in water in which, due 

to the evaporation of the acetone, Marangoni convection will start. The liquid contained 

tracer particles which were monitored by both a video and a photo camera. Figure 1 presents 

two photographs that are representative for the whole experiment. The triangular container 

with the fiat gas/liquid interface shows two large roll cells (Fig. la). In the container with the 

curved interface (Fig. lb),  a number of smaller roll cells are visible near the interface, 

Fig. 1. Roll cells observed in a triangular container with plane interface (a) and a container with curved interface 
(b). The largest dimension of both containers is 28.3 mm. Camera shutter time: 1 s. Photograph (a) was taken 7.4 s 
after injection of the liquid into the container, (b) after 9.3 s. 
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whereas the liquid bulk remains more or less quiescent. The maximum flow velocities were 
about 4 mm/s in the former case, and about 1.5 mm/s in the latter. 

The difference between these two flows has already been explained by Hoefsloot et al. [7]. 
The geometry of the triangular container leads to a depletion of acetone in the corner 
regions, creating a surface tension gradient which forces the liquid at the interface to flow 
towards the corners (macroscale effect). For the container with the curved interface the mass 
transfer by evaporation across the interface is homogeneous, and the onset of the convective 
flow is entirely due to hydrodynamic instability (microscale convection). This type of 
instability often tends to create a large number of small roll cells at the initial stage, with 
various coalescences or breakups of cells at later times, contrary to the rather stable two-cell 
pattern of the macroscale case. Apart from this, the flow caused by the macroscale effect is 
characterized by much larger flow velocities than in the case of microconvection. 

3. Mathematical formulation and numerical solution method 

The mathematical modelling of the convective flows will be based on the Navier-Stokes 
equations for two-dimensional flow of an incompressible Newtonian viscous liquid under 
zero-gravity conditions, combined with a convection/diffusion equation for the solute 
concentration. Two different geometries are considered. Case I (see Fig. 2) is the triangular 
container with a plane gas/liquid interface of length 2H and two rigid sides of length HV~. 
This case corresponds to the experimental container depicted in Fig. la. Case II (see Fig. 3) 
corresponds to the experiment shown in Fig. lb. The liquid region has the shape of a sector 
of a circle with radius H and opening angle ~/2. The circular boundary is the gas/liquid 
interface, the two plane boundaries are rigid walls. 

Length, time, velocity, stream function, vorticity and solute concentration are non- 
dimensionalized by scaling with respectively, H, H2/v, v/H, v, v /H 2 and ci,. Here u denotes 
the kinematic liquid viscosity and c~n is the (uniform) initial solute concentration. 
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Fig. 2. The triangular container with plane gas/liquid interface in the dimensionless x, y-plane (case I). 
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Fig. 3. The circular-sector container with curved gas/liquid interface in the dimensionless r, 0-plane (case II). 

3.1. Case I ( p l a n e  interface) 

In the  non-d imens iona l  fo rmula t ion  the liquid region in the x, y-p lane  is given by x + y > 1, 

x - y < 1, y < 1 (see Fig. 2). Af te r  in t roduct ion of  the s t ream funct ion qt and the vorticity to 
by the relat ions 

O~ O~ Ou Ov 
u - -  v -  o J - -  

Oy ' Ox ' Oy O x '  

where  (u, v) is the velocity vector ,  the governing  equat ions  for  qr, (o and solute concent ra t ion  
c can be wri t ten as 

Oto Oq t Oto O ~  Oto 
+ -V2oJ , (1) 

Ot Oy Ox Ox Oy 

w = - v Z q  s , (2) 

Oc O~F Oc Oq t Oc 1 
+ - V2c,  (3) 

Ot Oy Ox Ox Oy Sc 

where  t is the t ime variable,  ~ 72 is the two-dimensional  Laplacian 02/OX2Jc 02/Oy 2 and Sc 

deno tes  the Schmidt  n u m b e r  v / •  with D the coefficient of  mass diffusion in the liquid. 
A t  the solid walls we have the bounda ry  condi t ions  

O q t Off t O c O c 
qt . . . .  O, f o r x - y = l ,  

Ox Oy Ox Oy 

Oq t Oq t Oc Oc 
q r =  - -  + - -  -- - -  + - -  = O ,  for  x + y = l ,  

Ox Oy Ox Oy 
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implying zero flow velocity (no-slip condition) and mass impermeability. Assuming that the 
gas/liquid interface does not deform, we may put 

g t = 0  at y = l .  

Further we impose the mass transfer condition 

0C 
- - + B i c = 0  at y = l ,  
Oy 

where Bi denotes the Biot number defined as k H / D  with k the mass transfer coefficient of 
the gas phase. The tangential stress balance at the interface gives (see Dijkstra and Van de 
Vooren [1]) 

( Oc 
~o = -  Sc Ox at y = l  

where Ma is the Marangoni number 

(dy/d~' )c i .H 
M a -  

The derivative d y / d ~  of the (dimensional) surface tension y with respect to the dimensional 
solute concentration ~ is assumed to be equal to a negative constant. 

Finally, we have the initial conditions 

9 =  o ) = 0 ,  c = 1  for t = 0 .  

The above initial/boundary-value problem has been solved numerically by the well-known 
Alternating Direction Implicit (ADI) finite difference method (see e.g. [12] and [14]). The 
discretization for this method leads, after linearization, to sets of linear algebraic equations 
with a tridiagonal coefficient matrix which are relatively easy to solve. The time-discretized 
form of equations (1)-(3) reads 

(jom+l/2--O.) m 1(020)  re+l/2 OlI~mOg.om+l/2~ 1(a2~0 m a,/,"0~o"] 
At - 2  \ ~yZ ax -~y / + 2 \ Ox 2 + ay Ox / '  (4) 

(.om+l_(.O re+l~2 1 (cq2t0 m+l/2 olltmOo.lm+l/2 ] 1 (0201 m+l O~/~rn OW m+l ) 
At - 2  \ ~y2 ax ~yy / + 2 \  Ox 2 + O~- ax ' (5) 

lttn+l/2 --1lfn 1 ( 0211tn+l/2 c]21Itn ) 
- - -  + - - - -  + w " + 1  ( 6 )  

r 2 Oy 2 ax z ' 

- - -  + - -  + w " + 1  ( 7 )  
7 2 ay 2 OX 2 ' 

cm+lJ2 Cm , 21(lsc  2cm+l'2 y2 + -- 2Cm X2 +  cm) x 
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21(1 c o2cm+l,20,  o  +'Ox , +  1(1 c 02c +lox  + 0C +I)0x 
(9) 

where the superscript m denotes the time level t =  m At. In equations (6) and (7) a 
pseudo-t ime discretization has been introduced with time step r and counter  n. All 
derivatives with respect to the spatial variables x and y occurring both in the equations and in 
the boundary conditions have been replaced by second-order difference quotients. 

A nonuniform rectangular grid has been used. The grid lines parallel to the x-axis are 
given by 

y = y , = - 0 . 9 9  ( i / N )  2 + 1 . 9 9 ( i / N ) ,  i = O ,  1 . . . . .  N .  

The  grid lines x = constant run through the points of intersection of the lines y = Yi with the 
boundaries x + y = 1. In this way we have the highest density of grid points in the region 
near  the interface where the largest velocity and concentration gradients will occur. 

The numerical computation is carried out as follows. Assuming that gt, to and c are known 
at t ime level m, first the value tom+l/2 at the intermediate level m + 1/2 is computed from (4) 
and using this value of tom+l/2 in (5), the value of tom+l is computed. Next,  q ta t  level m + 1 

is computed iteratively from (6) and (7) with n as iteration counter  and using the stop 
criterion [qtn _ q,,+l] < 10-6. During this iteration, the pseudo-time step r is not kept fixed, 

but  it can be enlarged when n increases, thus saving computer  time. Finally, the computed 
value q tm+l is used in (8) and (9) to compute subsequently the concentration values c m+1/2 
and c m+t. At this stage qt, to and c are known at time level m + 1, so m can now be changed 
into rn + 1 and the procedure is repeated. This method is probably not the most cost-efficient 
one,  but it is reliable and works well also for large values of Ma and Sc. 

3.2. Case I I  (curved interface) 

In this case we use polar coordinates r and 0 in terms of which the liquid region is given by 
0 < r < 1, 0 < 0 < ~r/2 (see Fig. 3). The velocity components v r and v o are now related to gt 
and to in the following way: 

Oq t 1 0 g  t 1 Ov r 1 0 ( V o r  ) 
v ° -  Or v r - t o -  + 

' r 0 0 '  r O0 r Or  

and the equations to be solved for ~,  to and c read 

0¢0 020") ~- k 020) hi- 1 0 t o  1 O q z O to O q z 

Ot Or 2 r 2 002 r Or r ~ r  00 00 Orr ' (10) 

02vI t 1 O2q t 1 0 q  t 
t o = - - +  r2 - - +  , (11) 

Or 2 002 r Or 

[ 1 02¢ 1 0 c ]  l ( O q * O c  O q t O c )  Oc _ 1 O2C + 77 - -  + - + - (12) 
at Sc 0 7  002 r ~r r ~ Or Or -~  " 

The boundary conditions at the solid walls are 
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OC 02~-x I" 
att = O0 =0' tO 02 r , a t 0 = 0 a n d 0 = T r / 2 .  

Analogous to the preceding case, we impose three boundary conditions at the gas/liquid 
interface r = 1: 

Oc 
q t = 0 ,  - - = - B i c  a t  r = l ,  

Or 

and 

Oq*(  0% % )  Ma 1 Oc 
~°-2--~-r  = O-Tr - Sc  r 00 at r = a .  

The initial conditions at t = 0 are: 

t o = 0 ,  ~ = 0  and c = l .  

Since the above init ial /boundary value problem possesses the motionless solution qt = o~ = 0, 
c = Co(r, t), a very small initial perturbation of the interfacial value of c will be introduced to 
trigger off numerically the onset of micro-scale convection. 

As in case I, the numerical solution of the above problem has been obtained by means of 
an ADI  method.  The time-discretized version of equations (10)-(12)  is 

m + l / 2 m  ( 020) m+I/2 O(.orn+I/2) (020.)m (OllJm~oo.)rn) o~ - w 1 1 1 0 q  tm 1 1 

A t  - 2 ? 002 r Or O0 + 2 \ ~r"-r 2 + -  1 +  r O0 / Or / '  

(13) 

m + l  m + l / 2  (.£202(.0m+1/2 0(..0m+1/2) w - w _ 1 1 1 0 ~  m 

A t  2 002 r Or -00 

Oqt m'] 0 o 9 " + 1 ]  1 ( 0 2 w  m+' 1 (1 + - - - ~ - /  ~ / ,  
+ 2 \ Or E + r (14) 

lItn+l/2--1I~nT -- 21() 202lIen+l/2002 + 70211)'n -[- rl OqtnOr w r n + l )  , (15) 

a/tn+l--~/-tn+l/2 1 ( 1 02qtn+I/z 02qt~+I 1 0a/tn+l ) 
--  + - -  + W m+l  ( 1 6 )  

r 2 r= 002 Or 2 r Or ' 

C re+I~2-  C m 1 f 1 1 02C re+l~2 

At - 2 ~,Sc r 2 002 

0~t ¢m+l 1 ocm+I/2) 
Or r ~ / 

m + l  m + l / 2  
C - - C  

A t  

1(1 foZcm ocm 1  cm) 
+ ~  ~ L - ~ T r  2 + -  + -  r Or J r O0 Or 

_ 1 ( 1 1 02c m+l/2 01t lrn+l 1 0 c  " + ' / z ]  

2 Sc r 2 002 Or r ~ / 

1(1 1 
+ ~  ~L- -a -7 - - r  2 + + -  , r Or r oO Or 

(17) 

(18) 

where the superscript m denotes the time level t = m At. As in the discretized equations for 
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case I, ~- denotes the pseudo-time step and n the pseudo-time level. All derivatives with 

respect to the spatial variables r and 0 occurring in the basic equations and in the boundary 

conditions have been replaced by second-order differences. An equidistant grid has been 
used in the 0-direction, whereas in the r-direction a non-uniform grid has been used with a 

higher density of grid points near the interface r = a/H where the concentration and velocity 
gradients are large. The non-equidistant grid points have been defined as: 

r i = - 0 . 9 ( i / N )  2 + 1 . 9 ( i / N ) ,  i = 0 , 1  . . . . .  N .  

The numerical computation is carried out in the same way as in case I. 

3.3. Accuracy and convergence of  the numerical method 

The A D I  method which has been applied to solve the problems numerically has a first-order 

convergence rate in the time variable and second-order convergence with respect to the 

spatial variables. To check the correctness of the numerical algorithms a number of tests has 

been carried out. Since the convergence behaviour for case II is somewhat more intricate 
than for case I, we begin with some tests concerning case II. 

Table 1 shows values of the maximum of the stream function (qZmax) and the velocity at the 
interface at 0 =22 .5  ° (denoted by V225 ) at the point of time t =  1.25 × 10 -3 for the 
parameter  values Ma = 105, Sc = 100 and Bi = 55-100(0/~-). Note that Bi has been chosen 

here as a function of 0 along the interface, so that an artificial macroscale effect has been 

introduced and therefore no initial disturbance is required to start the convection. The 
computat ion has been done for three 0 × r grids (41 x 41, 81 × 81 and 161 × 161 points) and 
three At values (5 x 10 -5, 2.5 x 10 -5 and 1.25 x 10-s). The values of 1/"rma x and Vz2.5 show the 

expected convergence behaviour. 

In the next test for case II the Biot number has been taken constant (Bi = 20) and there is 
an initial perturbed interfacial concentration given by 

[0.999+O.O01(j /m),  j = O  . . . . .  M, 
c = [ 1 . O 0 1 _ O . O 0 1 ( j / M ) ,  j =  M . . . . .  2 M ,  

where 2M + 1 is the number of grid points in 0-direction and j runs from j = 0 (correspond- 

ing to 0 = 0) to j = 2M (0 = ~r/2). To make this disturbance compatible with respect to the 

three spatial grids which have been used in this test, the first row below the interface in the 
81 × 81 grid is given the linearly interpolated value between the undisturbed value (c = 1) of 

the second row and the interfacial value of c. For the 161 × 161 grid this interpolation is done 

for three rows, and for the 321 x 321 grid for seven rows. The computations were performed 
with M a =  105, S c =  100 and A t =  1.25 × 10 -5. The results for 1Fma x and V22.5 at time 
t = 2.5 x 10 -4, given in Table 2, demonstrate the desired convergence behaviour. 

Table 1. Test results for case II: 0-dependent Biot number, no initial concentration perturbation. 

grid 41 × 41 81 x 81 161 x 161 

A t  1/)'ma x V22.5 1/~ma x V22.5 1/fma x V22. 5 

5 x 10 5 0.0987 -3.768 0.0849 -3.397 0.0817 -3.314 

2.5 x 10 -5 0.1013 -3.832 0.0874 -3.464 0.0842 -3.384 

1.25 × 10 -5 0.1027 -3.864 0.0886 -3.497 0.0854 -3.416 
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Table 2. Tes t  r e su l t s  fo r  case  II: c o n s t a n t  B io t  n u m b e r ,  p e r t u r b e d  ini t ia l  c o n c e n t r a t i o n  (see t ex t ) .  

g r i d  81 x 81 161 x 161 321 x 321 

~max V22.5 1/fm ax V22.5 l//max V22.5 

2.5  x 10 -4 2 .12  x 10 4 - 0 . 0 0 6 3 1  2 .52  x 10 4 - 0 . 0 0 7 5 1  2 .61 x 10 -4 - 0 . 0 0 7 7 6  

A further  computat ion,  making use of an 81 x 161 grid and keeping the remaining 
pa rame te r  settings unchanged, gave a value for V22.5 that differed only 2 × 10 7 f rom the 
161 x 161 value of Table 2. Changing the time step to At = 2.5 x 10 5 and keeping all other  

settings the same gave ~max = 2.59 × 10 -4 on the 161 × 161 grid. 
The  above tests show that the convergence behaviour is as expected and accuracy is good 

for small time. To see how the accuracy is for larger values of t, computat ions have been 
carried out for case II  on two 0 × r grids (161x  321 and 321x  641 points) with A t =  
2.5 x 10 -5, Ma = 105 and Sc = 100 and Bi = 20. The initial per turbed concentrat ion along the 
interface is the same as above,  with linearly interpolated c-values for the first three rows 
below the interface for the coarser grid, and for the first seven rows in the case of the finest 
grid. The results for 1/fma x a r e  given in Table 3, f rom which it can be observed that accuracy 
deter iorates  gradually in time, but it remains acceptable for t ~< 7.5 x 10 -3. 

For  case I, being less difficult than case II ,  only one test is presented here with the 
pa rame te r  values Ma = 105, Sc = 100 and Bi = 20. Three  spatial (x z y) grids were used with 
t ime step At = 2.5 x 10 -5. T a b l e  4 gives results for ~max' From this table it can be seen that 
accuracy is reasonable as long as t is smaller than 1.25 x 10 2. 

3.4. Choice of  parameters 

In the numerical  computat ions of which the results will be presented in the next section, the 
following paramete r  values have been used: Ma = 105, Sc = 100 and Bi = 20. Theoretically,  
the Marangoni  number  would be about  108, but under experimental  circumstances the value 
will mostly be several orders of magnitude smaller. The choice of Sc = 100 instead of the 
actual value of acetone in water  (which is 787), is a compromise.  With the real value of Sc 
unacceptably small t ime steps would have been required to suppress numerical instabilities in 

Table 3. Tes t  r e su l t s  fo r  case  II: :ons tan t  B io t  n u m b e r ,  p e r t u r b e d  ini t ial  c o n c e n t r a t i o n  (see t ex t ) .  

g r i d  161 x 321 321 x 641 

t----] %.x '/'max 
6.25  x 10 4 0 .00039  0 .00041  

1.25 x 10 3 0 .00053  0 .00057  

2 .5  x 10 3 0 .00070  0 .00076  

5 .0  x 10 3 0 .00087  0 .00094  

7 .5  x 10 -3 0 .00096  0 .00104  

1.0 x 10 -2 0 .00103  0 .00177  

1.25 x 10 2 0 .00249  0 .00397  
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Table 4. Test results for case I: constant Biot number, no initial concentration perturbation. 

31 

grid 161 × 81 321 × 161 641 × 321 

"~"-I ~/~rn a x 1/~max ~max 

6.25 x 1 0  - 4  0.0011 0.0007 0.0006 

1.25 × 10 3 0.0043 0.0030 0.0025 

2.5 x 10 -3 0.0140 0.0109 0.0095 

5.0 × 10 -3 0.0345 0.0265 0.0237 

7.5 x 1 0  -3  0.0483 0.0418 0.0415 

1.0 × 10 -2 0.2020 0.2180 0.2059 

1.25 × 10 2 0.5381 0.5323 0.4609 

the solution (like wiggles). Lowering Sc increases the weight of the diffusive terms with 
respect  to the convective terms, thus improving numerical stability. The chosen value of Bi is 
in the usual range of experimental  values. 

The  spatial grid used for case I was the x x y grid of 641 × 321 points given in Table  4, and 
for  case II the 0 x r grid of 321 x 641 points given in Table 3 was used. In all computat ions  
At was equal to 2.5 x 10 -5. 

4. Numerical results 

The numerical  results are presented in the form of contour  plots of the s t ream function ~ for 
various points in time. Figure 4 shows some results for case I at times t = t~ = 2.5 × 10 -3, 2t~, 

3t~, 4t~ and 5t~. The corresponding values of ~max can be found in Table 4. It is seen that the 
characteristic roll-cell pat tern for this macroscale case emerges:  a quite stable pat tern of two 
large roll cells, in accordance with the experimental  observations. At  t = 3t~, an additional 
small cell is seen in each corner region, but it vanishes again soon afterwards. Although the 
plot for t = 5t~ is not to be completely trusted from a numerical point of view (see Table  4), it 
has nevertheless been included since it confirms the global impression of a stable two-cell 
pa t tern  for case I. 

The  first set of results for case II is represented by Fig. 5. The slightly per turbed initial 
concentrat ion distribution, which is symmetric with respect to the line 0 = zr/4, is the same 
as the one used in the second and third numerical test for case II  (see previous section). This 
initial concentrat ion has been chosen because the initial flow pat tern consists of two large roll 
cells and resembles the flow pattern created by the injection of the liquid into the container  
during the experiment .  The points in t ime for which the plots have been made correspond to 
those of  Table  3: t = t~ = 2.5 x 10 3, 2t~, 3t~ and 4t 1. The initial two-cell pat tern  is clearly not 
persistent:  the first stage of b reakup  into smaller cells is seen to occur in Figs 5c,d. This 
tendency towards a pat tern of many small cells near  the interface, along with a nearly 
motionless liquid bulk, is typical of microconvection.  Compar ing the values of ~max for this 
case (see Table  3) with those for case I (see Table 4), it is clear that the macroscale effects of 
case I lead to higher liquid flow velocities than the microscale effects of case II.  

Figures 6 and 7 show two simulations with initial disturbances leading to a flow pat tern 
with a relatively large number  of roll cells. In the case of Fig. 6 the initial concentrat ion has 
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(b) 

(c) 

~ ( d ~  

Fig. 4. C o n t o u r  plots  of  the  s t r eam func t ion  for  case I at  d imens ion less  t imes t~ (a), 2t~ (b) ,  3t~ (c), 4t~ (d)  and  5t~ 
(e), w h e r e  t~ = 2.5 x 10 3. 
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been perturbed by assigning the value c = 0.999 to the five grid points j = 0, 80, 160,240 and 
320 on the interface, whereas in Fig. 7 this has been done for the eleven grid points 
j = 0, 3 2 , . . . ,  288,320. Although the time evolution of the patterns is slow in both cases 
(which, of course, is a typical property of microconvection), a tendency towards an increase 
of the number of cells is visible. These microconvection simulations would require extremely 
large computing times to monitor their full evolution in time. For each set of results 
presented above the computing time amounted to several hours on a Cyber 962 mainframe. 

(a) 

(b) 

Fig. 5. Contour  plots of  the s t ream function for case II at dimensionless t imes t 1 (a), 2t 1 (b), 3t 1 (c) and 411 (d), 
where  tl = 2.5 x 10 3, computed  from the symmetrically per turbed initial concentrat ion distribution described in the 
text. 
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Fig. 5 (cont.). 
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(d) 

Fig. 6. As in Fig. 4, with initial concentration distribution perturbed at five locations on the interface. 
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(a) 

Fig. 7. As in Fig. 4, with initial concentrat ion distribution per turbed at eleven locations on the interface. 



5. Concluding remarks 
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The numerical results presented in this chapter confirm the experimentally observed 
phenomena for Marangoni convection in V-shaped containers as described by Hoefsloot et 
al. [7]. The triangular container (case I) shows a flow behaviour which is characteristic for 
macroconvection: a rather stable roll-cell pattern consisting of a small number of large cells, 
extending into the bulk region. The time development of the pattern is more rapid than in 
the case of microconvection and also the flow velocities are larger. The computations 
involving the circular-sector container (case II) give rise to typical microconvection be- 
haviour: small flow velocities, slow development of flow pattern and nearly motionless liquid 
bulk. The initial tendency is towards breakup of cells, but after longer times it is to be 
expected that coalescence of cells will lead to a more or less persistent pattern of somewhat 
larger cells. However, an accurate and numerically stable simulation of this long-term 
behaviour would require the availability of a considerable amount of computing time on a 
very large (super)computer. 
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